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Abstract

Research that links indoor environmental factors with
human health and comfort has progressed signifi-
cantly in recent decades, creating demand for high-
quality data that can inform existing metrics and cal-
ibrate mechanical and electrical systems. A conven-
tional sensor network that monitors light, tempera-
ture, and humidity has a spatial resolution propor-
tional to the number of sensors within a space. This
paper proposes a single roving sensor, constructed
from inexpensive commodity parts and mounted on
a commercially available robotic vacuum, that can
record measurements with a uniquely fine spatial res-
olution. This device is capable of performing surveys
of confined spaces to collect measurements with 10
cm spatial accuracy over sub-second time intervals.
We share a regionally weighted interpolation method
which we use evaluate this data. Using this device,
we can monitor environmental conditions with a fine-
grain spatial resolution that is resilient to changes in
the position of furniture and occupants and is rela-
tively low-cost.

Key Innovations

• Construction and evaluation of a low-cost and
uniquely high-resolution and flexible roving en-
vironmental sensor.

Practical Implications

A low cost roving sensor permits detailed measure-
ment in spaces that do not traditionally accommo-
date commercial sensor networks or where such net-
works are difficult to install. Measurements can be
communicated in real-time, making this suitable for
evaluating existing ambient conditions, driving con-
trol systems to improve occupant health and comfort,
and commissioning an existing system to improve ef-
ficiency.

Introduction

Light, temperature, and humidity can have profound
impacts on occupant comfort, productivity, alert-
ness, and satisfaction (Amundadottir et al. (2017);
Bluyssen (2013); Lan et al. (2010)). Mechanical and
electrical systems that regulate these factors often
rely on data from sensors to measure existing condi-
tions and verify when a target set point or threshold

is achieved. The use of sensors in the right locations
within a building can improve operational efficiency
and save energy by detecting anomalies and correct-
ing operational problems (Fernandez et al. (2017)).
Research behind the development of sensor systems
for control of the built environment is well estab-
lished (Sofos et al. (2020)), yet we lack an in-depth
understanding of how environmental attributes vary
over time and space within a majority of US building
stock.

Conventional building sensors can either be wired di-
rectly into the building system or wirelessly mount
to ceilings and wall surfaces or integrate within lu-
minaires. While wireless installations are often less
expensive to install, individual sensors have limited
battery life and can be more expensive per unit due
to networking and battery requirements (Cree et al.
(2013)). Complex sensing platforms are most com-
mon in large buildings where the cost of operation is
high and savings due to efficiency and occupant per-
formance can result in significant long-term savings.

Environmental sensors are less common in residential
buildings where improvements require a willingness
to invest in new equipment, insulation, or changes
in operational behavior. However, residential build-
ing typically consume more energy than commercial
buildings. In the U.S. in 2019, the sum of energy con-
sumed by all residential buildings was approximately
1.2 × 1020 J—22% more energy than all commercial
buildings (U.S. Energy Information Administration
(2020)). Lighting systems have become more efficient
due to LED source technologies; outdated heating,
cooling, and window technologies likely contribute to
an increase in energy consumption and decrease in
the indoor environmental quality (IEQ) in residen-
tial homes. Estimates from the U.S. Department of
Energy (2011) suggest that up to 15% of heating and
cooling costs could be saved by adjusting the setpoint
for residential thermostats or by making non-invasive
adjustment to filters, registers, window coverings, and
radiant barriers.

As it were, robust and pervasive environmental sens-
ing remains infeasible for many energy intensive sec-
tors within the built environment. Even for build-
ings with complex sensing platforms, the resolution
of available data is spatially constrained to the num-
ber of sensors in the system. Building systems with



a fixed number of sensors need to make assumptions
about the goals of building performance to meet those
goals. People naturally reorganize the spaces they
occupy over time, threatening any assumptions made
when a sensor system was first installed and further
threatening the system’s ability to meet its goals.
These conventional systems that rely on multiple,
fixed pieces of hardware are coarse and inflexible to
changes within the environment.

The same constraints of fixed sensing systems limit
research into IEQ and performance. While past stud-
ies have evaluated the impacts of dynamic light and
temperature exposure on occupant health and com-
fort, they have been constrained to laboratory, con-
trolled field, or simulation-based studies (Kim et al.
(2019); Danell and Rockcastle (2020)). In any case,
more robust data would reduce our reliance on as-
sumptions that may prove detrimental to occupant
health and energy performance in many buildings.

Alternative Sensing Models

Several mobile sensing systems have been explored
for different applications such as IEQ monitoring or
contaminant detection (Chen et al. (2017); Reggente
et al. (2010); Jin et al. (2018)). A paper by Jin et al.
(2018) sought to address the scarcity of dynamic in-
door environmental data by creating an automated
mobile sensing device to measure environmental data
from several attached sensors. This device performed
autonomous navigation using Simultaneous Location
and Mapping (SLAM) with an infrared camera sys-
tem to move about the space. The system recorded
sensor data periodically, associating sensor data with
approximate locations in space. The authors per-
formed an experiment to evaluate the device’s per-
formance by activating it in a controlled space, grad-
ually introducing CO2 into the space, and measuring
the result. They controlled their experiment by plac-
ing fixed sensors at known locations in the space to
verify the fidelity of sensor data and of the location
data. This contribution demonstrates the potential
of an agile mobile device for sensing the built envi-
ronment, but it relies on a computationally expensive
method of navigation that may not be well-suited to
practical indoor environments.

Research by Ulaganathan et al. (2017, 2019) proposed
the use of indoor occupants as navigational hosts to
collect data on illuminance. Using an Actiwatch 2,
this method allowed researchers to consistently mea-
sure a participant’s light exposure over several days.
The authors use the duration of time where values
greater than 1000 lux were recorded as an approxima-
tion of when participants were outside and exposed
to bright light. This approach did not incorporate
location tracking nor was it intended for building-
scale control operations. It nevertheless demonstrates
the capacity of a mobile host to support an IoT sen-
sor system and help researchers understand temporal

conditions experienced over time.

Method

The limited adoption, high cost, and low spatial res-
olution of commercial environmental sensing devices
constrains research into the impacts of the built en-
vironment on occupants and limits the design of en-
ergy efficient buildings that support occupant well-
being. However, IoT devices including smart light-
ing fixtures, thermostat controls, and autonomous
robot vacuum cleaners have become common end-
consumer products. These devices give users access
to fairly robust control and analysis of their environ-
ment. For example, the autonomous robot vacuum
cleaner is typically designed with the goal of thor-
oughly navigating and vacuuming the floor of its en-
vironment without user interaction. Autonomously
navigating a dynamic environment remains an open
area of research, but inexpensive and widely avail-
able consumer robot vacuum cleaners accomplish it
well enough to fulfill their purpose.

Our approach consists of a sensing system mounted
on a common robotic vacuum cleaner and minimally
interferes with the vacuum cleaner’s typical opera-
tions. Our sensing system has two necessary func-
tions: (i) environmental sensor readout capabilities
and (ii) real-time location estimation; on every read-
out, the measurement is annotated with location and
time. The vacuum cleaner with the sensor system
attached is free to perform its typical duties and nav-
igate the environment while the sensor system collects
measurements. The result is a time series capturing
both location and sensor measurements. We call this
approach a semi-parasitic construction because our
sensing system interfaces with the vacuum cleaner as
a parasite—benefiting directly from the movement of
the vacuum while minimally interfering with its reg-
ular processes.

In this section we detail the design of such a device,
the construction of a pilot study, and a method of
interpolating the resulting data.

Operational Design

We constructed a sensor system using a single board
computer, inexpensive commodity sensors, and an
ultra-wide band (UWB) location estimation network.
The sensor system is mounted on the vacuum as it
runs its cleaning cycle. Under typical conditions the
vacuum is configured to run once per day. However,
to run it more frequently and on specific time in-
tervals we programmed the sensor system to com-
municate with the vacuum cleaner. This was possi-
ble as our robotic vacuum cleaner exposed a serial
port, allowing it to accept commands from a host
device—in our case the mounted computer. We call
this construction semi-parasitic because we interrupt
the vacuum’s typical programming, depending upon
the computer to launch and terminate the cleaning



cycles in-synchronous with the sensor readouts.

We attached two sensors to the computer, one mea-
suring air temperature (C) and relative humidity (%)
and another measuring illuminance (lx). Sensor read-
outs are only sought when a position is determined
by the location estimation network. The measure-
ments are buffered and associated with the location
estimation and the current time. In practice, buffer-
ing is necessary because different sensors readout at
different time intervals. In our case, the illuminance
sensor’s readout is slower than the accompanying sen-
sor.

We constructed the location estimation network using
inexpensive, commercially available UWB DWM1001
radios. These networks produce location estimations
with 10cm accuracy under typical conditions (De-
cawave (2020)). Our UWB network architecture fol-
lows an anchor-tag model, wherein anchor radios are
fixed in the space at known locations and a tag ra-
dio is free to move around the space. We attached
the anchor radios to the walls of the space and the
tag radio to the vacuum. UWB sensors operate best
with line-of-sight communication, so we elevate the
sensors 1m high to increase the chance that line-of-
sight is maintained between the anchor and tag.

The computer communicates with a server hosted on
a cloud platform, which stores the sensor readouts in
a SQL database. This places an additional require-
ment that the space have a wireless network. How-
ever, if network access was unavailable we could store
the measurements locally on the device and process
them later. An hour of continuous sensing from the
device yields roughly 3MB of data comprising roughly
12000 readouts stored in an uncompressed text for-
mat.

The physical structure of the vacuum was modified
to accommodate its new capabilities. An elevated
tray was attached to the top of the vacuum to store
the computer and a lithium-ion battery which acts as
the computer’s power source. We elevated the tray
to not interfere with the manual button interface of
the vacuum. An antenna arm extends off of the tray
to anchor the environmental sensors and the UWB
radio. Finally, the bumper was extended vertically
with moulded ABS plastic to allow for collisions to
engage the bumper and to protect the antenna arm
from collisions. Figure 1 shows the completed device.

Pilot study

We conducted a pilot study in a 70 m2 room at the
University of Oregon. The room has two south facing
windows, one ceiling-mounted lighting fixture, wall-
mounted radiant heat, and ceiling-mounted air circu-
lation. This space contains several desks, chairs, and
laboratory equipment, and is frequently occupied by
research assistants. The dynamic and unpredictable
organization of furniture in the space provides a re-
alistic context for evaluating the performance of the

Figure 1: The completed device used in the pilot
study. The structural modifications to the vacuum
cleaner and completed sensor system is shown.

Figure 2: The floor plan of the room used in the pilot
study, given in meters.

device. Figure 2 is a detailed floor plan of the space.

The operational device we constructed uses the Cre-
ate 2 vacuum cleaner platform and a Raspberry Pi
model 3 single board computer. We chose two low-
cost sensors, a BME280 sensor to measure tempera-
ture and relative humidity, and a TSL2561 sensor to
measure lux. The two sensors are connected to the
computer through its GPIO interface and rest 15cm
above the floor on the device’s antenna arm. Three
UWB radios were configured as anchors in the space.
The radios were fixed 1 m above the floor and placed
on three different walls of the room. A final radio is
connected to the computer and is fixed to the antenna
arm.

Interpolation Method

Sensor readings from a roaming sensor will only have
one value at any point in time, but over longer time
intervals the data over space can emerge to cover the
entire area at a high resolution. This kind of data is
distinct from data collected in fixed sensor networks
and should be evaluated differently. This was first



recognized by Jin et al. (2018) who describe this as
an optimization problem where the goal is to find
a function that best estimates the value of an unex-
plored location at a certain time, given a time series of
locations and values T = {t1, p1, v1} . . . {tn, pn, vn}.
To accomplish this, they base their estimation for a
specific time and location, tk, pk from the LOWESS
smoothed value taken at that time, LOWESS (vk),
and refined with the residuals from the smoothing
method, ri = LOWESS (vi)−vi captured by an infer-
ence method, e.g. KNN or random forest (Cleveland
(1979)). The authors recognize that their method
assumes that the dynamics of a room are most in-
fluenced by global trends such as those caused by
outdoor weather or HVAC systems as well as local
trends like those due to occupants or furniture. Their
method encodes the global trends in the value from
the smoothing method and the local trends in its
residuals.

We observed that distinct regions within the space
were more homogeneous than the space as a whole.
For example, the lower left corner of the room was
consistently cool and the locations near the window
were consistently brighter. Adding to this, the mo-
tion of the vacuum is effectively random, leading to
the possibility that it may survey a single region
for extended periods. We therefore chose to forgo
global trends and instead interpolate based on re-
gional trends. The procedure for our method follows:

1. Scale the data to unit variance and perform k-
means clustering to classify the data into j dis-
tinct regions over space, time, and value, Y =
KMEANS (T ). In practice, we chose to optimize j
with the silhouette method. (Rousseeuw (1987)).

2. Each of the j regions is smoothed to determine a
trend for each class, LOWESS (vyi ) for y ∈ Y.

3. The value at any location and time is the k-
nearest values over space and time, smoothed by
their respective region.

This allows the residuals from multiple regions to in-
fluence a particular inference, particularly when sam-

ples come from several classes and if k is large.

Results

We recorded approximately 70 000 illuminance mea-
surements and 100 000 temperature and relative hu-
midity measurements over 10 hours of operation,
spanning 5 days, from 6 January to 10 January 2021.
The 10 hours is divided proportionally across each
day. Each day comprised 6 collection periods span-
ning 20 minutes each. Each collection period con-
sists of 2000–4000 annotated measurements, forming
a map of the measured attributes across space and
over the time interval of the collection period. This
readout rate is approximately 2–3 measurements per
second; however, lux measurements are consistently
read at a lower rate than temperature due to limita-
tions of our sensor hardware.

Figure 3 illustrates our raw, annotated measurements
over a single collection period. In this instance the
vacuum did not reach the lower left corner of the room
in its 20 minute period. We found that this area of
the room was missed in roughly half of all collections.
We attribute this to the complexity of the space, and
in particular that this area is only accessible by a
roughly 1.5 m wide path. In general, we found that
the room as a whole behaved as a suitable representa-
tion of a real-life space. Also notable in Figure 3 are
the flux of relatively low measurements throughout.
In this instance, anomalous measurements on the or-
der of 0–10 lx can be attributed to interactions with
occupants or with furniture objects such as a chairs
or desks.

Acting as a parasite on the vacuum cleaner yields
some uncertainties that manifest in the results. The
20 minute collection periods did not provide enough
time for the vacuum to circumnavigate the entire
room, and in general we found that areas with fewer
obstructions were included in more collections. Fig-
ure 4 illustrates the frequency of measurements with
respect to location across different collection periods
in a single day. Here we see that 49% of the nav-
igable regions (those with floor access) appeared in

Figure 3: Left: illuminance as measured over space from a single collection period (12:00 — 12:20 local time,
7 January 2021). Raw measurements are plotted at their annotated location. Right: the result of interpolating
with our regional interpolation method to 12:00. (log scaling used for lux.)



Figure 4: The frequency of measurements taken from
50cm2 regions of the space, over a single day (6 total
collection periods on 8 January 2021.) Regions are
counted if more than 10 measurements occurred in its
bounding box.

at least 3 of 6 collection periods and that 29% of all
navigable regions appeared in at least 4 of 6 collection
periods; further, the regions that appeared in at least
5 collection periods are thoroughly distributed about
the room, suggesting the vacuum is visiting several
distant areas of the room within any given collection
period. Variance in the number of measurements be-
tween collection periods is also notable but is likely
to be a limitation of our location estimation network.
The location estimation network depends upon iner-
tial changes in the position of the device and performs
best under line-of-sight. Instances where the vacuum
visited areas with poor line-of-sight or when the vac-
uum maintained a steady velocity likely account for
the variance in the number of measurements between
collection periods.

The data shown on the left of Figure 3, while contain-
ing greater spatial resolution than conventional fixed
sensors, remains relatively sparse. To produce a more
consistent image we apply our regionally weighted in-
terpolation method on the right of Figure 3. Figure
6 contains several time frames, interpolated with re-
gional interpolation to produce spatially consistent
images in sequence. This method produces a consis-
tent visual representation of the measurements taken
during a collection period. As our raw data occurs
at several points in space, we also gain the ability to
compare regions of different time frames containing
nearby measurements. However, our regional method
does capture the entirety of the dynamic range shown
in Figure 3. The raw image in Figure 3 has several ex-
tremely bright lux measurements over 1000 lux that
are likely due to daylight. Given that they are highly
variable, they do not appear as significantly on the
right of Figure 3. This is most likely due to our use of
a local smoothing method which de-emphasizes out-
liers.

Another consequence of this method of interpolation

Figure 5: A comparison of our regional interpolation
method compared to the method proposed by Jin et al.
(2018). The dataset is comprised of sensor data col-
lected 8 January 2021.)

is that the interpolation range does not respect the
physical boundaries of the space, sometimes expand-
ing the interpolated image into walls and solid objects
where a measurement could not have been taken. In
this pilot study we can simply remove these impos-
sible values which cannot exist. In cases where the
exact boundaries of the space are not known, it may
not be possible to remove inaccurate interpolated val-
ues.

Evaluation & Baseline

We compare our method of interpolation with the
method proposed by Jin et al. (2018) in Figure
5. They perform similarly, consistently interpolat-
ing within 0.1 C of each other. Our method infers
with a lower root mean square error (RMSE), reliably
0.1–0.25 less than the global method. We obtain sim-
ilar results without depending on an explicitly global
trend. This may be because the global effects of envi-
ronmental attributes (heat in this instance) are perva-
sive throughout the room. In other words, the prop-
agation of heat over time is likely represented across
space, making a temporally local point just as predic-
tive as a spatially local point. We attribute our lower
RSME score to the regions we derived from k-mean
classifications. This preserves some of the regional
features in the space, resulting in more accurate in-
ferences. Both methods underfit the peak recorded
by the HOBO data loggers at 14:00 local time.

The 6 HOBO data loggers fixed about the room we
located approximately 15 cm above the floor to put
them at the same height as the sensor system. In
practice, this meant they were located on the lower
faces of desks or table legs. As such, the fixed sensors
did not gather light data that matched the profile of
our device. The fixed sensors typically maintained a
low lux level, with several incidental peaks. As our
device traveled throughout the space, it was able to



Figure 6: Illuminance, temperature, and relative humidity measured over space, interpolated with our regional
interpolation method to 3 points in time on 8 January 2021. (log scaling used for lux.)

collect a robust profile of light as it behaves, not just
on walls and surfaces of the room, but throughout
it. Figure 7 plots average illuminance at 8:00–18:00
over the 5 days we collected data. Notably, Figure 7
follows a typical daylight decay pattern with the most
intense lux levels read between 10:00–14:00. The only
anomaly is 6 January where we note the weather was
particularly saturated in cloud coverage.

In Figure 8 we plot a similar graph of the average
temperature over the same time interval as Figure
7, plotted against the average fixed sensor measure-
ments. From this we see a similar trend between the
temperatures observed by both sensing systems. We
attribute the peaks in our device’s data to partic-
ularly warm heat sources discovered by the device
while roaming. The fixed sensors only capture the
heat after it has propagated from the source.

Discussion

The model we presented conveys a uniquely thor-
ough spatial resolution when compared to conven-
tional sensing devices. The results of our pilot study
demonstrate that existing, low-cost infrastructure in
the form of a robotic vacuum cleaner can be leveraged
to produce highly accurate isotopic maps of environ-
mental variables over space and time. This is ac-
complished with inexpensive parts and deployed with
relative ease. The environment in which we deployed
the pilot device is analogous to a residential space or
a small commercial space. The frequency at which

occupants visit the space poses a threat to our valid-
ity because we cannot be sure if they interrupted the
device. In fact, we recorded 2 instances where the
device was interrupted over the 5 days when we col-
lected data. In one case, we cannot be certain that
an occupant did not interfere, because no physical
obstructions were found, but in either case these are
challenges that would face a device in a real-world
environment.

The results demonstrate that it is the relationship
between measurements and even the relationship be-
tween multiple collections of measurement that con-
vey the true value of this method. In practice we saw
that no single vacuum cycle covered the entire room,
yet we are able to derive form out of somewhat dis-
parate sets of data. Similarly insightful value could
be derived from the evaluating the relationship be-
tween multiple rooms, or in ensemble with multiple
sensors.

Cost & Ownership

The hardware purchased to perform the pilot study
included 4 UWB radios, a Create 2 Roomba, a Rasp-
berry Pi 3, a Bosch BME280, an Adafruit TSL2561, 2
cell phone batteries, and several connectors to assem-
ble the system. The total cost of these components is
below $500 USD. The total cost of the Onset HOBO
data loggers used in the pilot study exceeds this eas-
ily at over $600 USD. As the size of the space grows,
up to the area that can be covered by a single robotic
vacuum, our system will only require more UWB ra-



Figure 7: Mean illuminance and variance taken over
5 days (8:00 — 18:00) from 6 January 6 to 10 Jan-
uary 2021 and calculated over each collection period
(log scaling used for lux.)

Figure 8: Mean temperature and variance taken over
5 days (8:00 — 18:00) from 6 January 6 to 10 Jan-
uary 2021 and calculated over each collection period.
Plotted against HOBO fixed sensor baseline.

dios to maintain the strength of the positioning sys-
tem. This however should only ever be necessary in
spaces without line-of-sight or where the distance be-
tween the radios approaches 100m Decawave (2020).
In contrast, to extend the range of a fixed sensor net-
work, sensors should be added at regular intervals.
As the size of the space grows the cost of the HOBO
network grows proportionally.

Selecting locations for fixed sensors is also not in-
expensive. Even if fixed sensors were preferred for
long-term use, our method could be deployed tem-
porarily to inform where in the space fixed sensors
would provide the most relevant information.

Typical licensing agreements with commercial sens-
ing systems do not place direct ownership of the sys-
tem with the building operator. However, in this ar-
rangement the system is likely to remain installed for
decades. A mobile and easily deployable system not
only broadens the types of spaces in which environ-
mental sensing can be deployed, but it also the occu-
pants who can deploy them. An inexpensive solution
would favor renters or even prospective homebuyers.

Limitations

There are several limitations to our proposed sensing
method.

• Height. In the pilot study we fixed the array
of sensors at 15 cm above the floor. We chose
this height because it integrated into the au-
tonomous vacuum platform with relative ease.
For some applications, measurements at typical
waist height (300 cm), head height (600 cm),
or ceiling height (800 cm) may be more desir-
able than floor height. While our implementa-
tion cannot sense at these heights, future work
could explore the engineering required to per-
form measurements at different heights. Even
so, the operational advantages of acting parasiti-
cally upon an existing means of locomotion may
outweigh this limitation. Further, even though
we cannot directly sense at greater heights, the
variance that we detect between locations, and
the accuracy at which we can fix location are
their own benefits.

• Location estimation. The pilot study depends
on a positioning system requiring a properly con-
figured network of UWB radios for accurate loca-
tion estimation. This system requires marginally
more infrastructure than some other solutions,
and not all applications may require the same
degree of accuracy we achieved. Other meth-
ods, such as SLAM or WIFI ToF for example,
may prove to be more appropriate to the specific
needs of the application or of the space. To con-
struct our system we first programmed into each
of the UWB radios a relative position in space
which it will occupy. To find a point in space
of each device measured each point from a local
origin point. This is a small inconvenience as
we only did this once, but it does represent an
opportunity to introduce human error. However,
anchor self-localization methods such as Shi et al.
(2019) address this issue.

• Energy usage. Our sensor system was powered
by a single 10000 mAh battery. Daily inspec-
tion of the device included replacing the battery.
We chose hardware for low cost and convenience
rather than the lowest energy. Many consumer
IoT devices share this characteristic. In practice,
the cost of repeated sensor readouts and network
usage has a significant energy cost which is only
compounded by the rapid consumer adoption of
IoT devices. We mitigate this in some regard by
acting as a parasite upon existing infrastructure.
The additional energy cost of sensing is insignif-
icant in relation to the energy cost of operating
the vacuum.



Conclusion

We presented a method of measuring the ambient at-
tributes of the built environment with a unique spa-
tial resolution. We demonstrated an implementation
of the method and conducted a pilot study. The re-
sults contain approximately 100 000 measurements
over 10 hours. The details of the results show how
data can be accurately measured over space and in-
terpolated to convey the dynamics of the room. The
benefits and limitations of this method are discussed
in context with current conventional devices. Future
work and applications are explored.
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