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Motivation

PDEs often model physical systems are deployed wherever physical
systems studied.

Application in earth sciences, physics, biology, finance, among
many others.

Large-scale systems of PDEs are computationally expensive and
memory intensive.

Methods such as hybridization reduce the memory of the system
allowing us to solve larger problems.
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Constructing a hybrid problem

(𝑢𝑥𝑥 + 𝑢𝑦𝑦) ⋅ 𝑢 = 𝑓

𝐀𝐮 = 𝐛

[ 𝐌 𝐅
𝐅⊺ 𝐃 ] ( 𝐮

𝝀 ) = ( ̄𝐠
̄𝐠𝛿

)

Continuous 2-D Poisson

Discrete linear system

Hybridized linear system
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Linear systems in elliptic PDES

𝑢 ≈ 𝐮 = 𝐀−1 𝐛

Exact solution

Approximate solution

Input vector derived from source

Sparse matrix operator

Linear system
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Solving linear systems

Direct methods
• Initial factorization can be expensive
• Fast, results are exact
• Requires more memory
• Less useful for big problems

Iterative methods
• Sought by refining an approximate solution
• Can be slower
• Requires less memory
• More useful for big problems
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Hybridized systems
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Hybridized systems

[ 𝐌 𝐅
𝐅⊺ 𝐃 ] ( 𝐮

𝝀 ) = ( ̄𝐠
̄𝐠𝛿

)

Block diagonal sparse matrix

Boundary coefficient matrix

Diagonal matrix

Volume solution

Source and boundary data

Internal interface solution
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Hybridized systems

[ 𝐌 𝐅
𝐅⊺ 𝐃 ] =

Block diagonal sparse matrix
Boundary coefficient matrix
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Hybridized systems

Global system

𝝀𝐀 = 𝐃 − 𝐅⊺𝐌−1𝐅
𝝀𝐛 = ̄𝐠𝜹 − 𝐅⊺𝐌−1 ̄𝐠

𝝀 = 𝝀−1
𝐀 𝝀𝐛

Local system

𝐛 = ̄𝐠 − 𝐅𝝀
𝐮 = 𝐌−1𝐛
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Hybridized systems

Example: 𝐌−1𝐅
𝐌1

𝐌2

𝐌3

𝐌4

𝐌5

𝐌6

𝐌7

𝐌8

𝐌9

×

−1

↓
𝐌𝑖 ×

−1

,
𝐌𝑖 ×

−1

,
𝐌𝑖 ×

−1

,
𝐌𝑖 ×

−1

for 𝑖 ∈ {1 ⋯ 9}

Takeaway: hybridization reduces memory and allows us to
compute several small operations.
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Implementation details

Hybridized 2-D Poisson equation implemented in C++

Utilizing PETSc (blas for linalg operations)

OpenMP for thread parallelism

PAPI used for performance profiling

Tested on 14 cores (Xeon E5-2683 v3 on Talapas)

Memory balance at 14.6 Flops/byte
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Scaling experiment

Parameters

Problem size (grid points) = 𝑛̄2

Number of elements = ℓ2

Local problem size = 𝑛2 = 𝑛̄2/ℓ2

Constraint
Fix 𝑛̄2 = 705, 600 and vary ℓ2 to evaluate strong scaling in terms of
grid points.
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Runtime with 28 threads

Performance is convex.
Best performance is at ℓ2 = 100 for 𝑛̄2 = 705, 600.
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Strong scaling does not correlate with runtime
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Two operations comprise majority of the runtime

• SpMV i.e., 𝐅⊺(𝐌−1 ̄𝐠)
• MatMul i.e., 𝐅⊺(𝐌−1𝐅)
• The remaining operations comprise < 9% of runtime
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Utilizing each operation

• SpMV cannot be reused as it uses source data.
• Results of MatMul can be reused if the geometry of the

problem does not change.
• For our purposes we assume MatMul cannot be reused.
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Analyzing SpMV

SpMV is generally memory bound.

𝐅⊺ × (𝐌−1 ̄𝐠)

Still the numbers of bytes in each unique 𝐅 component is less
than 𝐅 outright.

More elements ⇒ smaller 𝐅 components ⇒ greater data reuse.

4 unqiue sub-matrices ∈ ℝ𝑛×𝑛2

1 𝑛̄2 vector partitioned into ℓ2 length-𝑛2 vectors
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Analyzing SpMV

Runtime scales proportionally the number of bytes.

Takeaway: prefer fewer elements to minimize SpMV.
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Analyzing MatMul

MatMul is implemented as a batch operation.

One thread is responsible for one MatMul.

The number of MatMuls is a large sum related to the number of
interfaces.

Additional elements increase the number of MatMuls, but make
each MatMul smaller.

nnz = 5.3e6
ℓ2 = 9

nnz = 7.5e6
ℓ2 = 25



20/25

Analyzing MatMul

Case 1. Global volume (𝑛̄) is constant. Additional elements
decrease the size of each local volume (𝑛).
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Analyzing MatMul

Case 2. Several problems chosen with a similar total MatMul work
(flops).
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Analyzing MatMul

Case 3. Several problems chosen with a similar total MatMul
problem size (bytes).
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Profiling the cache

Case 1 reveals that cache misses increase while the total bytes read
decrease and the total writes increase.

This suggests that this problem is write-miss bound.
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MatMul performance

MatMul is compute bound above the system’s memory balance (14
Flops/Byte).

Below the system’s memory balance the operation becomes
memory bound and in particular, write bound.
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MatMul performance

Reads outnumber writes by 10:1 but
• inputs to MatMul become increasingly small and often fits

into the cache
• writes are only written to once, and much more likely to cache

miss
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Remarks

Building hybrid systems
Choosing the fewest elements is beneficial if you don't intend to
remesh often.

If you need to frequently remesh, we found ideal performance near
the system's memory balance.

Adding additional elements generally makes the global system
expensive.

Future work
A specialized block sparse format may improve performance by
eliminating writes in MatMul.

These results may help us develop a predictive model of
performance for larger systems.
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