
A high-performance characterization of hybridized PDEs

JOSEPH McLAUGHLIN
University of Oregon. Eugene, USA

Hybridization allows numerical partial differential equations (PDEs) to be broken up into smaller
problems i.e., elements, that can be solved independently and with less memory than with a single
equivalent system. Methods such as matrix-free assembly can also reduce memory usage, but
these methods are less flexible for anisotropic problems. In this work we provide a theoretical
analysis of a hybridized, 2-D Poisson problem assembled with an summation-by-parts operator
with simultaneous approximation terms (SBP-SAT). We also include an empirical evaluation of CPU
implementation of the problem utilizing the PETSc library for linear algebra operations and OpenMP
for parallelism. We demonstrate how the parameterization of the problem, including the num-
ber of elements and the size of each element, can effect the time-to-solution by an order ofmagnitude.

1 INTRODUCTION

Numerical solutions to linear elliptic partial differen-
tial equations (PDEs) are widely sought across math-
ematics, engineering, and computer science and are
commonly used to model physical systems in steady-
state or time-independent forms. Performant and flex-
ible approaches of encoding increasingly large systems
are critical as scale of computing resources continue
to grow. Elliptical PDE problems involve setting up
and solving a numerical linear system of equations
which tend to be dominated by memory-bound opera-
tions. Modern applications that utilize PDEs in scien-
tific simulations are increasingly complex, and need to
consider everything from the machine to the abstract
mathematics to effectively utilize available resources.

Hybridization i.e., Guyan reduction [13] or static
condensation [25], is one approach to reducing the
computational complexity of computational systems.
Hybridization is more commonly utilized using finite
elements [10, 11, 21], but recent work from Kozdon
et al. [18] has brought it into finite differences as well.
This method reduces the complexity of the computa-
tional system, assembled as a system of coupled sub-
domains that can each be solved independently along-
side an additional global system. In a shared memory
context this independence allows problems to be com-
puted that would otherwise utilize too much memory.

Conventionally, this has lent hybridization the rep-
utation of being mostly a tool for coupling otherwise
unwieldy problems together, and less a consideration
of performance. Either, a problem is too large to fit
intomemory and is Hybridized into smaller problems,
or multiple problems that would otherwise be diffi-
cult to represent in a single domain is coupled via Hy-
bridization.

In contrast to the conventional wisdom, recent
work from Dean et al. [8] intentionally utilizes hy-
bridization to demonstrate strong and weak scaling

on a massively parallel problem assembled as a dis-
continuous Galerkin method. Another paper from
Badrkhani et al. [2] utilizes hybridization to couple
large matrix-free sub-domains together for competi-
tive performance results.

The flexibility of hybridization makes it a compel-
ling choice for a computing large parallel problems.
Each sub-domain in a Hybridized problem is solved
independently, though several of the building blocks
needed to assemble a local problem can be shared be-
tween problems further reducing the computational
complexity. However, increasing the number of lo-
cal problem has the effect of increasing the size of the
global problem. It follows that there should exist a
trade off between the number of local problems and
cost of computing the global system. Numerical anal-
ysis commonly deals with the numerical accuracy of a
problem, but rarely considers time-to-solution a prop-
erty of problem. Yet, there exists fundamental rela-
tionship between the scale and orientation of a com-
putation and performance.

In this work we explore that trade off in a
shared-memory CPU-based problem. We assem-
ble a problem in a hybridized summation-by-parts
with simultaneous-appropriation-terms (SBP-SAT) fi-
nite difference scheme, solving the 2-D Poisson equa-
tion, coupling multiple sub-domains with penalty
terms analogous to Dirichlet boundary conditions i.e.,
numerical fluxes as given in finite elements, propor-
tionally varying the volume points within each sub-
domain as to fix the number of total volumepoints. We
implement this in PETSc [3] and view performance as
a function of the number of volume points in each ele-
ment i.e., the element size, yielding a strong and weak
scaling analysis. Throughout this work the terms sub-
domain and element are used interchangeably to refer
to the coupled problems within a hybridized problem.

1



2 BACKGROUND &MOTIVATION

In this section, We motivate this work with a brief re-
view of related approaches to solving linear elliptic
PDEs on parallel architectures. Additionally, we pro-
vide a description of the 2-D Poisson Equation that
we study in this work. Finally, we provide a back-
ground on the hybridization, as well as with the SBP-
SAT method that we use in the assembly of our prob-
lem.

2.1 Problem description
Through the use of the hybridized SBP-SAT method,
we investigate the shared memory, strong-scaling
characteristics of the 2D Poisson equation assembled
with the SBP-SAT method [18]. Whereas PDE perfor-
mance is largely considered in a weak-scaling context,
we study the strong-scaling characteristics by fixing
the number of volume points, leveraging the hybrid
formulation of the SBP-SAT method, to solve a varied
size and quantity of independent problems.

We assemble a 2D Poisson equation
⒧
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

⒭
𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) (1a)

defined over the domain

0 ≤ 𝑥 ≤ 1, (1b)

0 ≤ 𝑦 ≤ 1, (1c)

given the boundary conditions

𝑢(0, 𝑦) = sin(𝑦), (1d)

𝑢(1, 𝑦) = sin(𝜋 + 𝑦), (1e)

𝜕𝑢(𝑥, 0)
𝜕𝑦 = −𝜋cos(𝜋𝑥), (1f)

𝜕𝑢(𝑥, 1)
𝜕𝑦 = −𝜋cos(𝜋𝑥) (1g)

and source function

𝑓(𝑥, 𝑦) = −2𝜋2𝑢(𝑥, 𝑦). (1h)

This sets up a problem utilizing the manufactured so-
lution

𝑢(𝑥, 𝑦) = 𝑠𝑖𝑛(𝜋𝑥 + 𝜋𝑦). (2)

2.2 Discretization
Discrete numerical formulations of the 2-D Poisson
equation typically take the form

Au = b, (3)

where A is a discrete analogue of the Laplacian opera-
tor in Eq. 1a, b is a vector encoding the source function,
𝑓 , and u is an approximate solution, order-accurate to

the exact solution, 𝑢. Order of accuracy is typically de-
termined by A and varies on the choice of method. In
this problemwe assembleAwith the SBP-SATmethod
given in detail by Chen [7]. The SBP-SAT method has
practical characteristics of high order accuracy and a
proof of energy conservation. These qualities allow
the SAT terms to act analogous to fluxes in discontin-
uous Galerkin methods (DGM), and as such allowed
Kozdon et al. [18] to integrate the SBP-SAT method
into a hybridized scheme.

2.3 Hybridized scheme
The hybridized SBP-SAT formulation discretizes this
problem into a mesh of elements. This enables the so-
lution to each element to be computed independently
after solving a global, trace system. This is written in
the form


M F
F⊺ D

 ⒧
u
𝝀

⒭
=
⒧
ḡ
ḡ𝜹

⒭
. (4)

Here, u remains a vector of the approximate solution
to the grid points of the problem. 𝝀 is a vector of the
trace variables along the internal interfaces of the sys-
tem. M resembles A, but is block diagonal, with each
block encoding an element in the system. This is a
key quality of hybridization, allowing the system to
computed in a series of operations only dependent the
alignment of each block. F is a sparse matrix contain-
ing the internal interface boundary coefficients, andD
is sparse diagonal matrix. ḡ and ḡ𝜹 contain the source
data for the external boundaries and internal inter-
faces. We derive this hybridized system from Kozdon
et al. [18], who provide a detailed description of the
hybridized system.

From the Schur complement we have

(D − F⊺M−1F)𝝀 = ḡ𝜹 − F⊺M−1ḡ. (5)

This is solved in two parts: the global problem,

𝝀A = D − F⊺M−1F, (6a)

𝝀b = ḡ𝜹 − F⊺M−1ḡ, (6b)

𝝀 = 𝝀−1
A 𝝀b, (6c)

and the local problem,

u = M−1(ḡ − F𝝀). (7)

This permits us (a) to compute much larger problems
with less memory, especially if the problem is largely
homogeneous, and (b) to reduce the computational
complexity of solving the system by instead solving
several smaller systems. In both cases this allows us
express the Eq. (6a–6c, 7) as a concatenation of smaller
problems.

To form the smaller problems we decompose the
sub-matrices M, F, F⊺, and D. For example, as M is
block-diagonal, we store each non-zero component in
M as a matrix. For homogeneous problems several of

2



the non-zero components inM are identical, requiring
only one copy for each unique component for a given
shared-memory context. A similar structure exists for
F and F⊺, though the homogeneity of these matrices
depends on the mesh structure, not the domain
structure.

For this work we consider a specialization of the
problem where both the mesh and each element
are square. Here, the total number of elements, ℓ2,
is the square of the number of elements on any face
of the global domain, ℓ . Additionally, the number
of volume points in each element, 𝑛2, is the square
of the number of volume points along any face 𝑛.
Finally, there are only 4 unique interfaces, 1 for
each interior face of an element.

In a 3-by-3 example of the problem we reconstruct F
from the representational matrix, Find, and the set of
unique F𝑖 sub-matrices, substituting the appropriate
sub-matrix in place of the integer value, i.e.,

F = Find

𝑖/F𝑖 where 𝑖 ≠ 0, (8a)

Interface index
1 2 3 4 5 6 7 8 9 10 11 12

Find =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 · · · · · 2 · · · · ·
3 4 · · · · · 1 · · · ·
· 3 · · · · · · 2 · · ·
· · 4 · · · 1 · · 2 · ·
· · 3 4 · · · 1 · · 2 ·
· · · 3 · · · · 1 · · 2
· · · · 4 · · · · 1 · ·
· · · · 3 4 · · · · 1 ·
· · · · · 3 · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6
7
8
9

El
em

en
ti
nd

ex

(8b)
F1,F2,F3,F4 . (8c)

In this problem there are only 4 unique sub-matrices
because the mesh of elements consists of identically
sized 4-sided elements. The location of entries in each
row of Eq. 8b correspond to the orientation of inter-
faces along a given element seen in Fig. 1, e.g., element
2 has interfaces 1, 2, and 8, corresponding to non-zeros
in the identical columns in row 2 of Find.

3 METHODOLOGY
In this section, we analyze several operations in the
problem and derive characteristics its performance
given the size of each element, 𝑛2, and number of el-
ements ℓ2. We implement our problem in a shared
memory context via OpenMP [19] parallelism. As the
techniques between shared memory and distributed
memory parallelism vary, our description reflects the
characteristics of this problem that benefit shared
memory parallelism.

3.1 Performance model
With the decomposed matrices given by Eq. 8a–8c,
and the analogous form forM, we avoid storing identi-
cal sub-matrices, which a typical sparse matrix format

Interface 1

Interface 2

Interface 3

Interface 4

Interface 5

Interface 6

In
te
rf
ac
e
7

In
te
rf
ac
e
8

In
te
rf
ac
e
9

In
te
rf
ac
e
10

In
te
rf
ac
e
11

In
te
rf
ac
e
12

Element 1

Element 2

Element 3

Element 4

Element 5

Element 6

Element 7

Element 8

Element 9

G
lo
ba

lf
ac
e
1
(D

ir
ic
hl
et
)

G
lo
ba

lf
ac
e
2
(D

ir
ic
hl
et
)

Global face 3 (Neumann)

Global face 4 (Neumann)

Figure 1. An illustration the volume, and arrangement of
interfaces described by a 3-by-3 instance of the hybrid prob-
lem specified in (4).

would not. Additionally, where multiple operations
utilize the same F𝑖 M𝑖, we only perform this opera-
tion once. This holds for all sub-matrices of F⊺ as each
(F⊺)𝑖 ≡ (F𝑖)⊺. Such operations are found in computing
the global, trace problem i.e., Eq. 6a–6c.

The benefit of this is now, each local system is com-
puted as a series of smaller problems. This decompo-
sition strategy is characteristic of hyrbidized methods,
and is the fundamental reason to utilize these meth-
ods, in particular for larger problems sizes within a
shared-memory context [10, 17, 18].

3.1.1 Complexity of the trace system

The hybrid formulation permits us to compute much
larger problems with less memory and fewer reads, es-
pecially if the problem ismostly homogeneous. This is
of particular interest as the 3 significant computations
used in computing this problem i.e., MatMul, SpMV,
and linear solve via direct solve, are often memory-
bound operations. Additionally, we reduce the com-
putational complexity of solving the system by instead
solving several smaller systems. In both cases this al-
lows us to express the equations (6a–6c, 7) as a con-
catenation of decomposed, smaller problems.

To evaluate this the performance characteristics we
fix the global number of volume points, �̄�2, and vary
the number of elements, to understand if there exists
an optimal trade-off between the size of the decom-
posed matrices and quantity of computations derived
from the decomposed matrices.

3



3.1.2 Computing the trace inverse product

In our implementation, the product M−1F in Eq. 6a is
computed from a series a series of solves, storing F as
a vector of vectors to compute M−1F. That is, for each
directional F𝑘 boundary we store a list of 𝑛 vectors

F𝑘 =

f𝑘1 ⋯ f𝑘𝑛


∈ ℝ𝑛×𝑛2 . (9)

Here, each vector f𝑘𝑖 is implemented as a PetscVec-
tor object. This is in contrast to storing F as a sparse
matrix, and is necessary for the computation of M−1F
from the local matrices of M, stored similarly as

M =

M1 ⋯M𝑝


∈ ℝℓ2𝑛2×ℓ2𝑛2 , 𝑝 ≤ ℓ2. (10)

Where 𝑝 denotes the number of unique local matrix
operators in M.

With this we compute the intermediate result
M−1F, performing a linear solve of every unique local
matrix operator, and every vector of every directional
boundary coefficient matrix

solve(M𝑖,F𝑘
𝑗 ) for

0 < 𝑖 ≤ 𝑝,
0 < 𝑗 ≤ 𝑛,
0 < 𝑘 ≤ 4.

(11)

This result has a similar non-zero pattern as F, follow-
ing the same symbolic block structure. In our imple-
mentation we solve this system through direct solvers
made available through PETSc.

In our isotropic 2-D Poisson equation in Eq. 1 we
have

𝑝 =
⎧⎪⎨⎪⎩
ℓ 0 ≤ ℓ < 3
3 3 ≤ ℓ

. (12)

When 𝑝 = 3 we have one unique M𝑖 for the el-
ements along the top Neumann boundaries, the
bottom Neumann boundaries, and the interior el-
ements. Since 𝑝 is constant when ℓ ≥ 3, increasing
the number of elements, ℓ2 decreases the number
of solves in Eq. 11, as well as the size of each solve,
for a constant global volume, �̄�2.

The number of solves we compute for M−1F⊺ is then
𝑝 × 3 × 𝑛. Thus the total FLOPS we use to compute el-
ements of size 𝑛2 × 𝑛2 using forwards/backwards sub-
stitution is

FLOPS(M−1F⊺) = 24(�̄�/ℓ)5. (13)

Since we fix the problem size �̄�2, we write 𝑛 = �̄�/ℓ ,
allowing us to parameterize our model by the number
of elements instead of the size of each element. As �̄�
is constant, computingM−1F⊺ will require proportion-
ally fewer FLOPS as the number of elements increases.

3.1.3 Computing the trace MatMul

The pattern of the Fmatrix is determined by the inter-
faces since we compute the product of each interme-
diary result inM−1Fwith the F𝑘 interfaces that make a

M1

M2

M3

M4

M5

M6

M7

M8

M9

0 M𝑖 F1 F2 F3 F4

Figure 2. A visualization of the non-zero pattern of the ma-
trix operator of a 3-by-3 instance of the hybrid problem spec-
ified in Eq. 4.

face in a givenM𝑖. This is illustrated by Fig. 2wherewe
see that each shaded row in F corresponds to an inter-
face in Fig. 1. Again, wewrite the number of interfaces
in terms of the number of elements, 𝑟 = 2ℓ2 − 2ℓ . The
dimensions of 𝝀A can then be written as

𝝀A ∈ ℝ𝑟𝑛×𝑟𝑛 ≡ ℝ2�̄�ℓ−2�̄�×2�̄�ℓ−2�̄�. (14)

The number of non-zeros in the intermediary result
F⊺(M−1F) is given by

𝑛2
ℓ2

𝑖=1
(𝜙2

𝑖 ) (15a)

where
Find =


find1 ⋯ findℓ2


∈ ℤℓ2×𝑟 , (15b)

𝜙 =

nnz(find1 )⋯nnz(findℓ2 )


∈ ℤℓ2 , (15c)

or, the sum of the square of the number of internal in-
terfaces per element. An example of the non-zero pat-
tern of this result is shown in Fig. 3; the pattern of this
matrix is identical to 𝝀A as it just includes the addi-
tion D. This sum demonstrates that 𝝀A the number of
non-zeros always increase as increase the number of
elements.

The additional constraints we place on this prob-
lem, that being the square orientation of elements, we
can write 𝜙 as

𝜙 =
⎡
⎢⎢⎢⎢⎢⎣2, 2, 2, 2

4
, 3⋯3

4ℓ−8
, 4⋯4
(ℓ−2)2

⎤
⎥⎥⎥⎥⎥⎦ ∈ ℤℓ2 , (16)

where 2’s denote the corner elements, 3’s denote the
boundary elements, and 4’s denote the internal ele-
ments. In Eq. 15a we square each 𝜙𝑖 because F⊺ and

4



𝝀A ∈ ℝ3 360×3 360

�̄� = 840, ℓ2 = 9,
nnz = 5.3e6

𝝀A ∈ ℝ6 720×6 720

�̄� = 840, ℓ2 = 25,
nnz = 7.5e6

Figure 3. Additional non-zeros occur in 𝝀A when adding el-
ements. For a constant number of grid points, the number of
non-zero entries in this matrix increases when adding more
elements.

M−1F can both be derived from substitutions of Find,
and the sum is multiplied by 𝑛2 accounting for the ad-
ditional dimension of each F𝑘 .

The ordering of the rows in Find may not be equiv-
alent in this case, but the final sum will be identical.
Throughout the rest of the problem this is not an issue
if the ordering remains consistent.

From the number of non-zeros in 𝝀A we derive the
total FLOPS to compute F⊺ × (M−1F) as a 𝑣⊺𝑣 product
of every 𝑛2 length row in each (F𝑘)⊺ and each 𝑛2 length
column in the intermediary matrices of (M−1F). This
is again, expressed as a function of the number of ele-
ments

FLOPS(F⊺ × (M−1F)) = 2(�̄�/ℓ)4
ℓ2

𝑖=1
(𝜙2

𝑖 ). (17)

Here, we can also discretely determine the minimum
number of bytes needed by this operation. That is, the
memory needed for F⊺, (M−1F), and 𝝀A

BYTES(F⊺×(M−1F)) = 8×16(�̄�/ℓ)3+8×(�̄�/ℓ)2
ℓ2

𝑖=1
(𝜙2

𝑖 ).

(18)
From this we derive the arithmetic intensity of this op-
eration

𝜷(F⊺ × (M−1F)) = FLOPS(F⊺ × (M−1F))
BYTES(F⊺ × (M−1F))

(19)

which we plot as a function of the number of elements
in Fig. 4.

3.1.4 Computing the trace vector

We utilize two potentially expensive kernels to com-
pute 𝝀b in Eq. 6c, those being a matrix-vector linear
solve, similar to the matrix-matrix solve in Eq. 6b, and
an SpMV. The complexity of this is a solve is three
polynomial orders lower than Eq. 13 at

FLOPS(M−1ḡ) = �̄�4/ℓ2. (20)

9 144 484 1 024

10

20

ℓ2 (total elements)

FL
O
P/

by
te
le
ge
nd

st
yl
e

Figure 4. The arithmetic intensity (FLOPs/byte) of F⊺ ×
(M−1F).

This is evident as ḡ is a length �̄�2 vector, not a matrix
like F; as ḡ is a unique vector for everyM𝑖 we compute
ℓ2 solves instead of 𝑝 × 3 × 𝑛 solves.

To solve the SpMV we once again utilize the block
diagonal structure of the problem to compute F⊺ ×
(M−1ḡ). We compute each component solution from
each F𝑘 to the appropriate intermediate vectors of
M−1ḡ. FLOPs are totaled through a sum similar to
Eq. 15a, but only multiplied by 𝑛, as this is a matrix-
vector operation. The total FLOPs to compute this op-
eration is then

FLOPS(F⊺ × (M−1ḡ)) = 12(�̄�/ℓ)
ℓ2

𝑖=1
(𝜙2

𝑖 ). (21)

This appears as a 1st order polynomial because each F𝑘

contains 6(�̄�/ℓ) entries is used only once for each entry
in Find. We also then have the number of bytes needed
by SpMV in this instance

BYTES(F⊺ × (M−1ḡ)) = 96(�̄�/ℓ)
ℓ2

𝑖=1
(𝜙2

𝑖 ). (22)

3.1.5 Computing the trace solve

To solve 𝝀A we use a direct Cholesky solver provided
through PETSc. Here the total FLOPs to solve a 2�̄�ℓ −
2�̄� × 2�̄�ℓ − 2�̄� system is

FLOPS(𝝀−1
A 𝝀b) = 2(2�̄�ℓ − 2�̄�)2. (23)

3.1.6 Computing the local solves

Finally, to compute the solution via the local systems
in PETSc’s Cholesky solver in Eq. 7 we have ℓ , 𝑛2 ×
𝑛2 component matrices of M, by ℓ sub-sections of the
vector (ḡ − F𝝀). The total FLOPs are then

FLOPS(M−1(ḡ − F𝝀)) = 2(�̄�4/ℓ5). (24)

4 EXPERIMENTS
In this section we complement our analysis with per-
formance results of our parallel implementation of

5



Elements (ℓ2)
Th

re
ad

s
9 16 25 36 49 64 100 144 196 225 400 441 576 784 900 1225 1600

1 490 330 250 200 180 160 160 160 170 180 220 230 260 320 360 490 720
2 270 200 150 110 89 81 75 77 80 82 100 110 120 160 170 230 350
4 150 110 83 64 48 43 40 41 43 45 57 58 66 81 92 130 190
8 89 68 53 38 30 26 24 26 24 25 31 31 38 45 50 67 97
16 59 39 31 22 18 15 15 13 14 15 16 17 20 23 26 35 51
28 45 30 20 15 12 9.7 8.4 8.5 8.7 9.1 11 11 12 14 16 21 29

Figure 1. Compute time (s) given a fixed problem size for various element and thread configurations on a single Xeon E5-
2690 node.

the 2D hybridized SBP-SAT problem. We developed
code used to solve this system in C++ and utilize the
PETSc library to implement the linear algebra op-
erations utilized throughout. All linear systems are
solved using the direct LU solver provided by PETSc.
We implemented thread parallel routines in OpenMP
[19], utilizing the parallelism made available through
hybridization. Our code ran on the University of
Oregon’s Talapas supercomputing cluster on an Intel
Xeon E5-2690 v4 CPU. Profiling information includ-
ing cache accesses, writes, and flop counts were sought
using the PAPI profiler [16].

4.1 Strong scaling
We ran several problems with an fixed number of grid
points in the problem’s volume, varying 𝑛 and ℓ pro-
portionally, i.e., �̄� = 𝑛 × ℓ for some fixed ℓ . Each hy-
bridized system has more than 705 600 points as the F
factors increase the size of the system as we add el-
ements. Each problem was run with several thread
configurations, from 1 thread to 28 threads. Addition-
ally total number of elements varied between 9, with
78 400 grid points per element and 1600, with 441 grid
points per elements. With this we have a profile of
the problem’s strong-scaling performance, as well as
an insight in the effects of varying element size within
the same problem.

The optimal runtime was found at ℓ2 = 100 for
all thread configurations. A full table of the compute
time separated by thread count and element count is
given in Fig. 1. We plot the speedup i.e., 𝑆 = 𝑇/𝑇𝑝 for
the number of threads 𝑝 for the best and worst choices
of ℓ in Fig. 5.

Here, speedup scaling is proportional to ℓ . This
is not in proportion to the overall runtime by choice
of ℓ; the best case (ℓ2 = 100) has worse scaling than
ℓ2 = 1600 and better than ℓ2 = 9. This suggests that
different components of the problem are contributing
to the performance on either end of of this scale.

To this end we profiled the runtime of the 7 opera-
tions that comprise the hybridized system. Two oper-
ations utilize the majority of the compute time, those
being SpMV from Eq. 6b and MatMul from Eq. 6a.
The remaining 5 operations average 8% of the com-
pute time when run on a single thread. The compute
time of the two major operations are plotted in Fig. 6
with the same configuration of problems.

We exclude the time spent factorizing M and 𝝀A

for this problem, its practical application would likely
involve the reuse of these factorization several times.
It is worth noting that the cost of LU factorization for
𝝀A becomes considerable as ℓ2 increases. This is ex-
pected by Eq. 14 as the size of 𝝀A increases with ℓ and
by Eq. 15a as the number of non-zeros increases with
ℓ .

4.2 MatMul analysis
Out of the two kernels that comprise the majority of
the runtime we see the most variability in MatMul op-
eration from Eq. 6a. The operation is implemented
in a similar manner to batched general matrix mul-
tiply (GEMM) methods [24], but as our intermediate
results from M−1F are dense vectors we instead com-
pute a batched vector inner product. Batching meth-
ods allocate single threads to self-contained operations
in contrast to of coordinatingmultiple threads to solve
a larger problem.

These results show an optimal range of elements
to minimize runtime between 100 to 600 elements for
�̄� = 840. When there are too few elements the problem
has a greater number of FLOPs and bytes loaded. The
total FLOPs of this operation decrease for MatMul at
a rate of 1/ℓ4 from Eq. 17 and the total bytes decrease
at 1/ℓ3 from Eq. 18. As both of these terms decrease,
our runtime decreases proportionally until we reach
approximately 600 elements.

1 2 4 8 16 28

1

2

4

8

16

28

Threads

Sp
ee
d
up

Ideal
ℓ = 3
ℓ = 10
ℓ = 40

Figure 5. The speed up of three pairs of 𝑛 and ℓ such that �̄� is
constant. Scaling improves as ℓ increases; however, overall
runtime is best at 𝑒𝑙𝑙 = 10.

6



9 49 196 576 1600
0

100
200
300
400

Elements

R
un

ti
m
e
(s
)

9 49 196 576 1600
0

10
20
30
40

Elements

R
un

ti
m
e
(s
) SpMV MatMul

Figure 6. Runtime of routines that significantly contribute
to the overall runtime for various element configurations. 1
thread (top) and 28 threads (bottom).

4.3 SpMV analysis
The SpMV kernel is similarly batched to compute
F⊺ × (M−1

𝑖 ḡ) for each element. Unlike MatMul, each
intermediate vector in M−1

𝑖 ḡ is unique since ḡ is
unique. Additionally, we compute proportionally
fewer batches of 𝑛2 × 𝑛 SpMV than MatMul, and write
out to significantly fewer memory locations. We still
encounter the same write miss penalty as we both in-
crease the size of the intermediate vector F⊺ × (M−1

𝑖 ḡ)
and decrease the size of each batch operation propor-
tionally. Even at the smallest element size each batch
write 21 doubles, which is larger than a typical cache
line.

4.4 Memory behavior
To investigate the decreasing performance of our Mat-
Mul and SpMV operations we chose pairs of �̄� and ℓ
with similar total flops for the MatMul kernel. These
problems averaged 1.32e11 flops with a coefficient of

9 49 196 576 1600
25

50

75

100

Elements (ℓ2)

Pe
rc
en

ti
de

al
sp

ee
d
up

2 Threads 4 Threads
8 Threads 16 Threads
28 Threads

Figure 7. Performance of the decomposed MatMult ker-
nel on a fixed problem size (705600 grid points) for various
thread counts and total elements.

100 600 1,100 1,600
106

108

1010

Elements

C
ac
he

ev
en

ts

L3 writes
L3 misses

Figure 8. L3writes andmisses profiled for the strong scaling
problem configuration. Though the total byteswritten out to
𝝀A increasewith additional elements, fewer occurwith every
batch. Fewer writes per batch to more rows of 𝝀A increase
our cache misses and overall runtime.

variation of 2.3e−3. Though the flops between each
problem varies insignificantly, and the bytes loaded
decrease, the number of entries in 𝝀A — and hence the
number of bytes written increases. This is illustrated
in on the left of Fig. 9; this also plots the measured
number of L3 cache writes in MatMul kernel on the
right. The number of L3 writes grows proportional to
the number of entries in 𝝀A. The number of entries
are approximately 80× greater than the number of L3
writes. This is slightly less than the number of 8 byte
doubles that fit into a 128 byte cache line.

81 196 400

1
1.5
2

⋅107

81 196 400

1
1.5
2

⋅106

En
tr
ie
s
in

𝝀 A

L3
w
ri
te
s
to

𝝀 A

Elements (ℓ2) Elements (ℓ2)

Figure 9. The amount of non-zero elements in 𝝀A for a set of
problems with similar flop profiles (left) and the number of
L3 cache data writes measured with PAPI (right). While the
total flops are similar, the size and number of entries in 𝝀A
continues to grow.

The runtime of MatMul SpMV, and the LU factor-
ization of 𝝀A all increase in runtime, even though
the flops remaining minimally changed and the bytes
loaded decrease. We illustrate this in Fig. 10. The
growth of the 𝝀A factorization ide to the additional
non-zero entries increasing its complexity. For the
other two operations this suggests that the greatest im-
pact to runtime at this scale is the number of writes
to 𝝀A, i.e., that these operations are becoming write
bound. This is affirmed by Fig. 8, as additional the
sum of L3 write and misses in the MatMul kernel as
we increase the number of elements while fixing grid
points.

7



81 196 400

10

20

81 196 400
4
5
6
7

81 196 400
20
40
60
80

Elements (ℓ2)

R
un

ti
m
e
(s
)

SpMV
MatMul

𝝀 factorize

Figure 10. The runtime of three expensive operations using
28 threads on several problem sizes with a similar total flops.
Though the total flops remain essentially the same, the run-
time increases for all three kernels.

5 DISCUSSION
The results of our implementation of the hybridized
method and subsequent experiments show that the
bulk of the problem’s compute time is spent setting
up the hybridized method. Solving all local problems
requires at most 1.5% of the total compute time. The
remaining 98.5% of the compute time is spent solv-
ing the global system, and 91% of the compute time is
spend solely on the MatMul and SpMV operations.

5.1 Selecting an optimal batch size
All major operations in this problem are thread par-
allel batch operations, which often effectively map to
the mathematics of the hybridized method. We chose
a problem that could be batched as evenly as possi-
ble to access the most parallelism in this model. We
demonstrated that the two expensive operations have
optimal performance ranges. For the MatMul opera-
tion this occurs whenwe decrease the amount of work,
but are not yet write bound. We plot time estimates
from these two metrics in Fig. 11. The FLOPs model
estimates time from the FLOPs function in Eq. 17 nor-
malized by the system’s peak single core FLOPs (8e+9).
The memory model is identical to the FLOPs model,
but also multiplies the ratio of writes to bytes loads.
In this model we optimize for both the minimal num-
ber of flops, and the minimal write to load ratio.

We should be particularly interested inminimizing
the write to load ratio, as it also resembles the increas-
ing the runtime in the SpMV operation.

5.2 Optimizing MatMul
Our implementation of batched MatMul naively com-
putes batches, looping over each row and column of
the components of F⊺ and M−1F to compute 𝝀A. This
implementation doesn’t translate to ideal cache uti-
lization and is for our purposes, random. Recall that
the ordering of Find does not matter as long as it re-

100 600 1 100 1 600

0

200

400

ℓ2 (total elements)

R
un

ti
m
e
(s
)

FLOPs
Peak FLOPs

FLOPs
Peak FLOPs

Writes
BYTE

Experimental results

Figure 11. MatMul performance models (s/ℓ2) plotted
against single-threaded results.

mains consistent throughout the problem. We could
attempt to achieve amore ideal cache utilization, writ-
ing to 𝝀A row by row as much as possible. This could
also be achieved without reordering Find by modifying
the underlying batching algorithm.

At scales where the problem and the work is larger,
such as where ℓ < 10 in our profiling problem there
is still room to optimize there problems, as suggested
by the FLOPs model Fig. 11. These problems mini-
mize the runtime on the other operations of the global
system, but increase the runtime of computing the
global system. We implemented these operations with
PETSc, but other highly optimized libraries such In-
tel MKL may get us closer to the theoretical peak
FLOPs. Such problems would inherently be limited
to isotropic, but still applicable for large systems.

The best performance of our problem (ℓ2 = 100)
approaches the theoretical peak FLOPs, but scales
poorly. This suggests that while the problem utilizes
the CPU effectively on a single thread, it is encounter-
ing additional cache misses that are being hidden by
an ideal balance in work to cache latency. As we add
threads to the problem it computes more batches in
the same amount of time, but that time is still bound
by the cache latency. Further, as we reduce the arith-
metic intensity by adding elements, we again reveal
the cache latency, but in this case we have also added
additional writes.

A solution here might use a specialized sparse
block matrix formats. To implement F we on store the
matrix components, instead of storing it outright. A
similar representation would reduce the work and the
number of writes to 𝝀A, but could cause more caching
issues either when factorizing 𝝀A or using it in an iter-
ative method.

5.3 Future work
This work largely profiled a single problemwith a con-
stant volume, but substituting different element sizes
in each mesh. Interesting problems that are larger,

8



with more variability, and complex meshes require
increasingly detailed models of performance. Re-
cent work that approaches larger anistropic problems
with complex meshes often has utilizes additional re-
sources such asmachine learning [14, 20] or functional
analysis Ramabathiran and Ramachandran [20]. An-
other work from Hutter and Solomonik [15] utilizes
tensor completion methods to construct performance
models. A similar method could utilize the param-
eters of this problem, including the number of ele-
ments, the size of the problem, the variability in the
domain, and the shape of the grid to construct per-
formancemodels for large problemswith performance
data from small problems.

6 SUMMARY
In this work we presented an implementation of a Hy-
bridized 2-D Poisson equation, implemented in the
PETSc scientific computing library, and parallelized
in OpenMP. Hybridized problems are assembled from
multiple elements and coupled with interface condi-
tions, which in total comprises the problem’s volume.
This problem is solved in two parts, wherein a sparse
system is solved, allowing for the solution to be com-
puted independently for each element. We developed
a theoretical model of the work required to compute
the problem in FLOPs, derived from the mathematics
of the problem. We also provided a description of the
problem size in bytes loaded, and the number of write
operations that occur in major operations. We con-
ducted an experiment to demonstrate that the overall
time-to-solution for this system is heavily effected by
the number and size of each element chosen. For one
problem with 705 600 grid points we found the opti-
mal runtime when we used 100 40 × 40 elements. Fi-
nally, we determined that the largest operations in the
problem were latency bound, discussed strategies for
reducing the effect, and what effects this might have
on larger problems.

References
[1] Karrar Kadum Abbas and Xianping Li.

Anisotropic mesh adaptation for image seg-
mentation based on mumford-shah functional.
ArXiv, abs/2007.08696, 2020. URL https://ap
i.semanticscholar.org/CorpusID:220633259.

[2] Vahid Badrkhani, Rene R Hiemstra, Michal
Mika, and Dominik Schillinger. A matrix-free
macro-element variant of the hybridized dis-
continuous galerkin method. arXiv preprint
arXiv:2302.10917, 2023.

[3] Satish Balay, Shrirang Abhyankar, Steven Ben-
son, Jed Brown, Peter R Brune, Kristopher R
Buschelman, Emil Constantinescu, Alp Dener,
Jacob Faibussowitsch, William D Gropp, et al.

Petsc/tao users manual. Technical report, Ar-
gonne National Lab.(ANL), Argonne, IL (United
States), 2022.

[4] Marsha J Berger and Joseph Oliger. Adaptive
mesh refinement for hyperbolic partial differen-
tial equations. Journal of computational Physics,
53(3):484–512, 1984.

[5] Alex Bespalov, David J Silvester, and Feng Xu. Er-
ror estimation and adaptivity for stochastic collo-
cation finite elements part i: single-level approx-
imation. SIAM Journal on Scientific Computing, 44
(5):A3393–A3412, 2022.

[6] Matthias Bollhöfer, Olaf Schenk, Radim Janalik,
Steve Hamm, and Kiran Gullapalli. State-of-the-
art sparse direct solvers. Parallel algorithms in
computational science and engineering, pages 3–33,
2020.

[7] Alexandre Chen. Iterative methods for earth-
quake cycle simulations with hpc applications.

[8] Joseph P Dean, Sander Rhebergen, and Garth N
Wells. Design and analysis of a hybridized dis-
continuous galerkin method for incompressible
flows on meshes with quadrilateral cells. arXiv
preprint arXiv:2306.05288, 2023.

[9] Alain Dervieux, David Leservoisier, Paul-Louis
George, and Yves Coudiere. About theoretical
and practical impact of mesh adaptation on ap-
proximation of functions and pde solutions. In-
ternational journal for numerical methods in fluids,
43(5):507–516, 2003.

[10] Pablo Fernandez, NgocCuongNguyen, and Jaime
Peraire. The hybridized discontinuous galerkin
method for implicit large-eddy simulation of
transitional turbulent flows. Journal of Compu-
tational Physics, 336:308–329, 2017.

[11] Matteo Frigo, Nicola Castelletto, Massimiliano
Ferronato, and Joshua A White. Efficient solvers
for hybridized three-field mixed finite element
coupled poromechanics. Computers & Mathemat-
ics with Applications, 91:36–52, 2021.

[12] Caroline Geiersbach and Winnifried Wollner. A
stochastic gradient method with mesh refine-
ment for pde-constrained optimization under
uncertainty. SIAM Journal on Scientific Comput-
ing, 42(5):A2750–A2772, 2020.

[13] Robert J Guyan. Reduction of stiffness and mass
matrices. AIAA journal, 3(2):380–380, 1965.

[14] Ru Huang, Ruipeng Li, and Yuanzhe Xi. Learn-
ing optimal multigrid smoothers via neural net-
works. ArXiv, abs/2102.12071, 2021. URL ht
tps://api.semanticscholar.org/CorpusID:
232035769.

9

https://api.semanticscholar.org/CorpusID:220633259
https://api.semanticscholar.org/CorpusID:220633259
https://api.semanticscholar.org/CorpusID:232035769
https://api.semanticscholar.org/CorpusID:232035769
https://api.semanticscholar.org/CorpusID:232035769


[15] Edward Hutter and Edgar Solomonik. Applica-
tion performance modeling via tensor comple-
tion. In Proceedings of the International Confer-
ence for High Performance Computing, Network-
ing, Storage and Analysis, SC ’23, New York, NY,
USA, 2023. Association for Computing Machin-
ery. ISBN 9798400701092. doi: 10.1145/358178
4.3607069. URL https://doi.org/10.1145/35
81784.3607069.

[16] Heike Jagode, Anthony Danalis, Hartwig Anzt,
and Jack Dongarra. Papi software-defined events
for in-depth performance analysis. The Interna-
tional Journal of High Performance Computing Ap-
plications, 33(6):1113–1127, 2019.

[17] Tzanio Kolev, Paul Fischer, MisunMin, Jack Don-
garra, Jed Brown, Veselin Dobrev, Tim Warbur-
ton, Stanimire Tomov, Mark S Shephard, Ahmad
Abdelfattah, et al. Efficient exascale discretiza-
tions: High-order finite element methods. The
International Journal of High Performance Comput-
ing Applications, 35(6):527–552, 2021.

[18] Jeremy E Kozdon, Brittany A Erickson, and Lu-
cas CWilcox. Hybridized summation-by-parts fi-
nite difference methods. Journal of Scientific Com-
puting, 87(3):85, 2021.

[19] OpenMP Architecture Review Board. OpenMP
application program interface version 3.0, May
2008. URL http://www.openmp.org/mp-doc
uments/spec30.pdf.

[20] Amuthan Arunkumar Ramabathiran and Prabhu
Ramachandran. Anisotropic, sparse and inter-
pretable physics-informed neural networks for
pdes. ArXiv, abs/2207.00377, 2022. URL https:
//api.semanticscholar.org/CorpusID:
250243921.

[21] Sander Rhebergen andGarthNWells. Analysis of
a hybridized/interface stabilized finite element
method for the stokes equations. SIAM Journal
on Numerical Analysis, 55(4):1982–2003, 2017.

[22] Ashesh Sharma, Shreyas Ananthan, Jaya-
narayanan Sitaraman, Stephen Thomas, and
Michael A Sprague. Overset meshes for in-
compressible flows: On preserving accuracy of
underlying discretizations. Journal of Computa-
tional Physics, 428:109987, 2021.

[23] Rüdiger Verfürth. A posteriori error estimation
and adaptive mesh-refinement techniques. Jour-
nal of Computational and Applied Mathematics, 50
(1-3):67–83, 1994.

[24] Cunyang Wei, Haipeng Jia, Yunquan Zhang, Kun
Li, and LuhanWang. Lbbgemm: A load-balanced
batch gemm framework on arm cpu s. In 2022
IEEE 24th Int Conf on High Performance Comput-
ing & Communications; 8th Int Conf on Data Sci-
ence & Systems; 20th Int Conf on Smart City; 8th

Int Conf on Dependability in Sensor, Cloud & Big
Data Systems & Application (HPCC/DSS/SmartCi-
ty/DependSys), pages 59–66. IEEE, 2022.

[25] Edward L Wilson. The static condensation algo-
rithm. International Journal for NumericalMethods
in Engineering, 8(1):198–203, 1974.

10

https://doi.org/10.1145/3581784.3607069
https://doi.org/10.1145/3581784.3607069
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://api.semanticscholar.org/CorpusID:250243921
https://api.semanticscholar.org/CorpusID:250243921
https://api.semanticscholar.org/CorpusID:250243921

	INTRODUCTION
	BACKGROUND & MOTIVATION
	Problem description
	Discretization
	Hybridized scheme

	METHODOLOGY
	Performance model
	Complexity of the trace system
	Computing the trace inverse product
	Computing the trace MatMul
	Computing the trace vector
	Computing the trace solve
	Computing the local solves


	EXPERIMENTS
	Strong scaling
	MatMul analysis
	SpMV analysis
	Memory behavior

	DISCUSSION
	Selecting an optimal batch size
	Optimizing MatMul
	Future work

	SUMMARY

