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Abstract. A data science pipeline represents the concatenation of pro-
cessing steps in developing data science or machine learning models. This
article proposes a framework called Pipeline Trees or Transformation-
Trees, which aids a data scientist in developing alternative pipelines. In
finding a suitable pipeline to solve a data science problem, a data scien-
tist searches for the best order and parameters of pre-processing steps.
This search process can be cumbersome and time-consuming; the search
space explodes quickly with the number of possible operations to be in-
cluded as possible steps in the pipeline (and the parameters those steps
require). This article presents TTree (Transformation Tree), a python
library that allows a data scientist to deal with various options in pro-
ducing a pipeline. Data science is a vast field; this article highlights the
benefits of utilizing machine learning pipeline trees to process, analyze,
model, and forecast time series data. TTree forms a Transformation Tree
that allows processing and manipulation of the time series data however
the Data Scientist sees fit. This library can simplify and expedite the
process of time series analysis.
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1 Introduction

Time series data analysis is an important segment of computer science and ap-
plies to almost every industry. Many fields observe and record data over a span
of time, and make predictions about how the data will change. Many natural
phenomena can be also modeled as a time series and their predictions are useful
for many fields of research. Predictions of future outcomes and the underlying
process to derive predictions can inform and influence the decision-making pro-
cess (8). For instance, when generating renewable energy with solar panels, the
two most important variables that impact the amount of energy produced by
a solar cell are solar irradiance and ambient temperature (15). Each of these
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variables can be measured over time to create a time series. In this process, so-
lar power plant managers and engineers are interested in estimating how much
energy the plant will produce in the near future. Financial time series models
assist stockbrokers in forecasting how a stock’s price will change, and environ-
mental scientists can record geological data over time to make predictions about
earthquakes. The main problem for data scientists is managing the processing,
statistical analysis, training, modeling, and visualization of large data sets.

One part of the time series problem is processing “dirty” data into a form
that the scientists can work with. Furthermore, large data sets could be riddled
with outliers and null values that need to be removed in order to get an accurate
picture of the set. After cleaning the data set into a workable form, the data
scientist can then begin statistical analysis, training, and modeling their data.

Statistical methods such as ARIMA, Exponential Smoothing, etc., have tra-
ditionally solved the forecasting problem (8). Recently, the forecasting problem
has attracted the attention of the machine learning community, and there are
a variety of methods to produce time series forecasting models. A linear struc-
ture that defines a sequence of processing steps to be applied to data is called
a pipeline. Pipelines play a similar role in data manipulation as sequential con-
structs in general programming. The data science community has developed
several libraries to implement pipelines; among others, the most prominent of
them these days are Scikit-Learn (11) and TensorFlow (3).

Still, there does not exist a mathematical model or a straightforward proce-
dure that takes a data scientist from data to forecasting seamlessly. The data
scientist in charge has to explore a pipeline search space, where the set of possi-
ble linear arrangements of transformations to form a pipeline can grow quickly.
At each step, one can choose several different transformations, in different order,
with different operating parameters.

This article presents TTree (Transformation Tree), a python library that al-
lows a data scientist to deal with different options in the production of a pipeline.
Data science is an extremely large field; this article focuses and highlights the
benefits of utilizing machine learning pipeline trees to process, analyze, model,
and forecast time series data. TTree provides the ability to simplify and expedite
the process of time series analysis.

2 Pipelines

In data science we often use pipelines, but their fundamental purpose expands to
various parts of our daily lives. Despite their many uses, a pipeline’s overarching
goal is to fetch a data set and perform a sequence of tasks. Eventually, we can
observe the output data and pass it as input all over again. More specifically, after
data enters a pipeline, various pre-processing functions will transform it to create
and train models for diverse purposes. Let us define a pipeline as a sequence of
data transformations; Fig. 1 shows one such sequence of transformations.

Let us call X the pipeline input and consider the pipeline consists of transfor-
mation steps; Fi denotes the transformation function contained at step i of the
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Fig. 1: A Data Transformation Pipeline

pipeline. The pipeline output, Y , can be expressed as the function composition
of the transformation functions included in each step, as shown in Eq. (1). We
will call each of those functions a pipeline node, and later on, a tree node.

Y = Fm(Fm−1(...F1(X)) (1)

Most of the data transformation functions require parameters. For instance,
in denoising by rolling windows, we need to specify the window width. Eq. 2
includes those parameters, denoted by θ, to each node.

Y = F θmm (F
θm−1

m−1 (...F θ11 (X)) (2)

One of the most crucial characteristics of a pipeline are their (sequential)
order of execution and opportunity for a recurring cycle. Libraries such as Scikit-
Learn (11) and TensorFlow (3) have had success in assisting with these issues.
Both libraries provide programmers with tools that assist in the use of machine
learning pipelines. Compiling neat, coherent, and automated pipelines is an area
that no existing framework has conquered. At each step of the construction
of a pipeline, a Time Series Data Scientist has various alternatives; different
operators can be used to preprocess, model, display, or forecast the time series.
Those options must be explored in a systematic way and the experiments that
perform such explorations must be properly recorded. Frequently, when those
methodological steps are not fulfilled, the Data Scientist ends up walking in
circles, repeating experiments that were already performed. Pipeline Trees aid
the Data Scientist in that exploration and recording of experiment results. A
data tree can be assembled, studied, and when it is ready, it can be executed,
freeing the user from having to execute a sequence of experiments related to
that exploration of the space of pipelines. At any point of the formation of a
TTree, the user can execute any of the pipelines defined in the tree. One of the
first processing steps may be to reduce the data size, so that the execution of a
pipeline or the whole tree does not take very long. Later on, the user can execute
selected pipelines with larger data sizes or with the whole dataset. The TTree
library aims to solve many issues around the existing pipeline exploration and
organization. To the best of the authors’ knowledge, no work covering this topic
has been included in any data science or machine learning libraries, nor has it
been presented in any conference or journal article before.

3 Pipeline Trees

This section describes the methodology of using tree-like data structures to de-
sign and implement Time Series Transformation pipelines. When working with
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Time Series data, a Data Scientist wants to transform the data in various ways,
i.e., there are alternative methods to stationarize, denoise, model, and forecast.
The decisions about what alternatives to take are made iteratively at various
points in developing pipelines (those decisions need to be documented and out-
lined.) Pipeline trees are non-linear data structures for tracking precisely these
kinds of non-linear decisions. A Pipeline Tree is called a Transformation Tree
TTree, sinc each step in a pipeline performs data transformation operations.
Every path from the tree root to a leaf constitutes a pipeline. The functionality
provided by TTrees includes testing and executing alternative pipelines in order
to compare the results they produce. Once achieved the desired results, pipelines
can be extracted directly from a Transformation Tree. Fig. 2 shows an example
of a Transformation Tree.

Cayley proposed the tree structure, one of the most studied abstractions in
computer science, in 1857 (6). Different programming languages provide diverse
implementations of trees. The following definitions provide the basic ground to
work with Transformation Trees.

Fig. 2: A Transformation Tree is an n-ary Tree

Definition 1. Let T be a finite set of data transformation functions, V be a
finite nonempty set of vertices, l a total function l : V → T , and E a set of
ordered pairs of distinct vertices called edges. G = (V, l, E) is a labeled graph.

Definition 2. A labeled tree, T , is a connected, acyclic labeled graph.

l assigns a transformation function to a tree node. Edges in E are ordered to
denote parenthood, i.e., (x, y) means y is x’s child.
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Definition 3. The only node that does not appear in the right side of the ordered
pairs in E is called the tree root, r, i.e., it does not have a parent.

Definition 4. A node that does not appear in the left side of the ordered pairs
in E is called a leaf, i.e., it does not have children.

Definition 5. A path from r to a leaf is a complete path, p on a transformation
tree.

A complete path describes the transformation process for that given pipeline.
Formally, Eq. (2) expresses the transformation that one such path provides to
data. The n-ary tree structure defined above is the primary data structure used
to organizing a transformation tree, which contains a set of pipelines used on a
Time Series.

We can view the Transformation Tree nodes as operators (see Def. 1), with a
transformation function associated with them. An operator can provide the nec-
essary pre-processing functionality for Time Series Data, plot the Time Series, or
act as a Machine Learning model component. Furthermore, operators perform-
ing the same task can use various arguments when needed (see Eq. 2). Pipeline
Trees offer a way for the user to track their experimentation process. As a whole,
the tree represents a series of alternatives to producing a reasonable forecasting
model. At any point during the development of a Tree, the user (a data scientist)
can branch away from the current pipeline to test alternatives. Fig. 2 shows an
example of how branching on alternatives to a pipeline component produces a
Transformation Tree.

TTrees enable us to compare performance between two routes easily since
extracting and executing pipelines from these structures is integral in their de-
sign. When a set of transformations provides an acceptable level of performance
for the task at hand, the user can quickly identify the complete path that offers
the most reasonable solution and extract it from the tree. Fig. 3 illustrates the
extraction of a pipeline from a Transformation Tree.

This article presents TTrees, a mechanism that provides a Time Series Ma-
chine Learning Engineer or Data Scientist with the tools to explore alternatives
in the formation of appropriate pipelines, i.e., pipelines that produce Machine
Learning Models for Time Series Forecasting with a desired performance level.
The functionality provided in TTrees includes the definition of different time
series preprocessing, analysis, and forecasting models. Users can define any op-
erations useful to their particular application domain. For instance, many econo-
metric time series are non-stationary; in those cases, the application of differ-
ences, logarithms, or other data transformations can be useful. Perhaps, the time
series are too noisy and the user wants to augment the TTree with noise removal
operations. Perhaps the time series is too simple that an ARIMA model suffices
to produce a reasonable forecasting performance, or the data is so chaotic that a
sophisticated Deep Learning model is required. Any of those operations can be
implemented by a user and used in conjunction with TTree to explore the best
pipline for her forecasting needs.
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Fig. 3: Pipeline Extraction from a Transformation Tree

4 Implementation and results

The TTree library enables its user to create flexible transformation trees that
will cover various use cases. The library’s implementation provides three classes:
Node, TTree, and Pipeline. The building blocks for constructing a transforma-
tion tree are nodes containing the node identifier, a transformation function
(operation), and references to its parent and children. Fig. 4 shows the structure
of a Transformation Tree node.

Fig. 4: Transformation Tree node

The available transformation functions can be divided into input/output
(read csv, store model), pre-processing (denoise, impute outliers), sta-
tistical analysis (normality test, mse, mape), modeling (mlp fit, mlp forecast),
and visualization (plot, box plot, histogram).
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Each transformation function returns a value that becomes the parameter
for the next node’s function. This flexible Node class allows users to define their
own operations, insert them where needed into the transformation tree, and test
them by executing the entire tree or specific paths (pipelines).

The TTree class provides methods for creating, modifying, and saving trans-
formation trees. The library also provides functions for deleting, executing, and
saving pipelines. The package is open source; the reader can find an exhaustive
list of functions available in the package in GitHub.

Every pipeline starts at the root node and ends at a leaf, i.e., it is a complete
path (Def. 5). The result of experimenting with a Transformation Tree must
be a successful pipeline, i.e., one which produces a reasonable pre-processing,
modeling, and forecasting for time series of a given domain. Fig. 5 shows the data
flow occurring during the execution of a pipeline extracted from a transformation
tree.

Fig. 5: Data Flow through a Pipeline

One of the functions of the Pipeline class is to extract a selected pipeline, so
that it can be tuned and put into production.

A caveat to consider regarding the TTree class is that the user must know
function compatibility. The nodes are flexible, accepting any functions they are
created with, so users must be cognizant of adjacent nodes’ return values and
parameters. The return value of a parent node must be compatible with the
children’s node functions’ parameters. This knowledge will ultimately allow the
users to alter, remodel, and explore pipelines that can fit their data.

When a tree is created, it contains only a root node, containing a function
that loads time series data and returns an array of the data points. A user
typically inserts a node containing a plot operator as a root child. A typical path
may be a sequence of denoise, impute missing data, and plot transformations;
each operation takes an array and returns a modified array. Such a path is
attached at the root or its child. After inserting the nodes with their respective
operators, the tree can be further modified, executed entirely, or invoked to
export desired pipelines. The user can also add a plotting node at the end of each
path to demonstrate that particular pipeline’s effect. We can see how the pipeline
modifies the data at each step; this tracing capability can help find a sequence of
operators that create a model that performs reasonably. The transformation tree
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also provides the opportunity to modify the model further, exchange operators
as needed, and save it for later use.

Fig 6 demonstrates the formation of a TTree using a custom design matrix
method and a RandomForest model.

>>> root = Node(lambda : read from file(’temp historic.csv’))

>>> tree = TTree(’Historic Temp Data’, root)

>>> tree.add nodes byid(0, Node(plot ts))

>>> tree.add nodes byid(0, Node(denoise))

>>> tree.add nodes byid(2, Node(impute missing data))

>>> tree.add nodes byid(2, Node(design matrix(15, 3))

>>> tree.add nodes byid(3, Node(design matrix(15, 3))

>>> tree.add nodes byid(2, Node(design matrix(15, 3))

>>> tree.add nodes byid(3, Node(design matrix(15, 3))

Fig. 6: Formation of a TTree

Several Machine Learning and Deep Learning libraries provide tools to form
pipelines, e.g., Scikit-Learn (1) and TensorFlow (2). Data Scientists use pipelines
in time series analysis, from preprocessing, statistical analysis, data cleaning,
modeling, forecasting, monitoring models performance, etc., and in the final
stage, deploying models to production, once those models have reached satisfac-
tory performance levels.

Although those libraries provide tools to implement pipelines, none offers a
tool to explore the pipeline space and experiment with different options to form
a set of promising pipelines. TTrees is a library that provides such a tool.

5 Related Work

The increasing complexity and size of data processing tasks in time series re-
search, machine learning, and in related interdisciplinary fields has prompted
several software projects with the intended goal of improving data processing
workflows. This section discusses a collection of related research papers and
projects, and how our work contributes to this area.

Data science infrastructure. There is demonstrable need for more robust
tools and methods in the field of data science. Several contemporary research
papers focus entirely on designing tools to facilitate the operations of data science
researchers.

Cingolani et al., (2015) (7) propose a scripting language (BigDataScript) to
directly address the growing needs of data scientists. BigDataScript is designed
to robustly facilitate the construction of data processing pipelines and to provide
illustrations of pipeline performance.

Saltz et al., (2019) (13) recognize the growing practical needs of data scien-
tists in their work with by proposing a modified workflow routine derived from
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kanban techniques (Anderson (2010) (4)). Their intention is construct a work
process that is well defined within a field where the duties and responsibilities
are often variable in duration, notably distinct from traditional agile tasks.

Probabilistic models. Researchers in the field of natural language processing
have applied similar pipelining methods as a means of performing complex tasks
where extracting lexical features from tokens and word groups quickly becomes
computationally expensive. Informed by the sucesss of probabilistic models (e.g.
Wellner, 2012 (14)), Bunescu, 2008 (5) introduces a method of probabilistic
feature extraction that maintains a pipeline model. The authors user a measure
of confidence on each node’s output to select relevant features, and to analyze
downstream feature dependencies.

A method from Raman et al., 2013 (12) builds upon probabilistic graph-
ical model methods, generalizing them for data science tasks and attempting
to improve the complexity of selecting to an optimal pipeline through several
inference methods. The authors propose this as an alternative to hand-tuning
every pipeline to particular task, instead constructing the pipeline as a DAG
and following several paths, selecting the best under a criterion.

Interdisciplinary research & industry. With a greater means to collect data
in novel ways, researchers are rapidly recognizing the need pipeline analysis and
more powerful data analysis tools. Norgaard et al., 2018 (9) state this explicitly
in their analysis of positron emission tomography data, used to capture the
distribution of neurotransmitter activity. The authors find that their analysis
leads them to question whether neuroimaging results can be determined invariant
of prepossessing pipeline techniques.

Data-mindedness has always influenced industry as process optimizations are
often sought for financial benefit. The proliferation of integrated IoT sensors has
only heightened this interest; a paper form Oleghe et al. (2020) (10) demonstrates
a framework for analyzing data collected throughout the manufacturing process
using a pipeline, with the intention of formalizing the process as a whole.

6 Future Work

The implementation we present in this article is a proof of concept of the ideas
behind it; it is a prototype. We can extend TTrees in several directions: The
TTree library uses several machine learning libraries, it does not implement any
Machine Learning, pre-processing, or visualization algorithms.

In the same way that TTree imports from several libraries, it exports pipelines
to be used with other libraries. The most common libraries that implement
pipelines are Scikit-Learn (1) and TensorFlow (2); exporting pipelines in the
format required by those libraries is the first extension we devise.

A more general implementation that includes processing vector time series
is also in our plans (10). Most application domains include related variables
that could be used to forecast the variable of interest (based on other variables)
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or forecast all variables at once. For example, in renewable energy, variables
of interest include ambient temperature, humidity, atmospheric pressure, wind
speed, wind direction, and solar irradiance. In several processes in that domain,
we are interested in forecasting wind speed or solar irradiance; we could use the
other variables to provide more information to produce such forecasts.

Executing a transformation tree be very time-consuming. Parallelizing the
execution of those trees is a feature of interest to every data scientist. Nowadays,
many libraries allow us to parallelize Python programs’ execution (see (7; 1; 2).)

We also plan to provide a graphical user interface, where a click creates
nodes, nodes are attached to other tree nodes by drag and drop, cutting old
connections and establishing new ones. This kind of interface will allow the user
to copy and paste sub-trees, select pipelines, and other operations related to
TTrees. In general, the system will use several direct manipulation techniques to
provide the user with a more natural experience designing transformation trees.

7 Conclusions

In finding a suitable pipeline to solve a data science problem, a data scientist
searches for the best order and parameters of analysis, pre-processing, and mod-
eling steps. This search process can be cumbersome and time-consuming; the
search space grows with the number of transformation operations possible steps
in the pipeline and the parameters those steps require. This article presents
TTree (Transformation Tree), a Python library that allows a data scientist to
deal with various options in producing a pipeline. Data science is a vast field;
this article highlights the benefits of utilizing machine learning pipeline trees to
process, analyze, model, and forecast time series data.

TTree forms a Transformation Tree that allows processing and manipulat-
ing the input however the data scientist sees fit. This library can simplify and
expedite the process of time series analysis.

To the best of the authors’ knowledge, this idea has not been presented in
literature before. We expect to continue its development and integration with
other machine learning libraries.

TTree has been converted to a package and uploaded to the pip repository
for easy installation (install it using pip install transformation-tree). The
source code has been been made publicly available on GitHub3.
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